If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+16x-8=0
a = 40; b = 16; c = -8;
Δ = b2-4ac
Δ = 162-4·40·(-8)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{6}}{2*40}=\frac{-16-16\sqrt{6}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{6}}{2*40}=\frac{-16+16\sqrt{6}}{80} $
| 2x+22=X+1 | | 118=x+x*18 | | 5x/5+9=59 | | (6x-19)=139 | | 2/3x-40=-32 | | n+0.04n=1100 | | Y=1/2x+100 | | (15x+8)=(9x=26) | | 0.2m=-22 | | 5x+3x=40-30 | | 1.5=18x | | 10^5.4=x | | X^2+11x+4.4=0 | | 12x+12=7634247623424535223 | | 12x+21=2 | | X+10x=6x | | y(y-9)=18(2) | | y=36/y-9 | | 6.1x-2)+x=51.7 | | 16(x+12)=4 | | 10+2t=3* | | 26*2^x=4*5^x+2^x | | -7=-7(x+6) | | (2x+1)+(3x+7)=0 | | 12-p=3p | | n(n-1)=2250 | | 736-(g-123)=938 | | 3x^2+33x-78=0 | | 9/2x=54= | | -.5x-20=4x-2 | | 2/3x-13=-11 | | 34=n-17 |